The inhibition of prions through blocking prion conversion by permanently charged branched polyamines of low cytotoxicity.

نویسندگان

  • Yong-beom Lim
  • Charles E Mays
  • Younghwan Kim
  • William B Titlow
  • Chongsuk Ryou
چکیده

Branched polyamines are effective in inhibiting prions in a cationic surface charge density dependent manner. However, toxicity associated with branched polyamines, in general, often hampers the successful application of the compounds to treat prion diseases. Here, we report that constitutively maintained cationic properties in branched polyamines reduced the intrinsic toxicity of the compounds while retaining the anti-prion activities. In prion-infected neuroblastoma cells, quaternization of amines in polyethyleneimine (PEI) and polyamidoamine (PAMAM) dendrimers markedly increased the nontoxic concentration ranges of the compounds and still supported, albeit reduced, an appreciable level of anti-prion activity in clearing prions from the infected cells. Furthermore, quaternized PEI was able to degrade prions at acidic pH conditions and inhibit the in vitro prion propagation facilitated by conversion of the normal prion protein isoform to its misfolded counterpart, although such activities were decreased by quaternization. Quaternized PAMAM was least effective in degrading prions but efficiently inhibited prion conversion with the same efficacy as unmodified PAMAM. Our results suggest that quaternization represents an effective strategy for developing nontoxic branched polyamines with potent anti-prion activity. This study highlights the importance of polyamine structural control for developing polyamine-based anti-prion agents and understanding of an action mechanism of quaternized branched polyamines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elimination of prions by branched polyamines and implications for therapeutics.

We report that branched polyamines, including polyamidoamide dendimers, polypropyleneimine, and polyethyleneimine, are able to purge PrP(Sc), the protease-resistant isoform of the prion protein, from scrapie-infected neuroblastoma (ScN2a) cells in culture. The removal of PrP(Sc) by these compounds depends on both the concentration of branched polymer and the duration of exposure. Chronic exposu...

متن کامل

Prion replication elicits cytopathic changes in differentiated neurosphere cultures.

The molecular mechanisms of prion-induced cytotoxicity remain largely obscure. Currently, only a few cell culture models have exhibited the cytopathic changes associated with prion infection. In this study, we introduced a cell culture model based on differentiated neurosphere cultures isolated from the brains of neonatal prion protein (PrP)-null mice and transgenic mice expressing murine PrP (...

متن کامل

Spermidine cures yeast of prions

Prions are self-perpetuating amyloid protein aggregates which underlie various neurodegenerative diseases in mammals. The molecular basis underlying their conversion from a normally soluble protein into the prion form remains largely unknown. Studies aimed at uncovering these mechanism(s) are therefore essential if we are to develop effective therapeutic strategies to counteract these disease-c...

متن کامل

Inactivation of prions by acidic sodium dodecyl sulfate.

Prompted by the discovery that prions become protease-sensitive after exposure to branched polyamine dendrimers in acetic acid (AcOH) (S. Supattapone, H. Wille, L. Uyechi, J. Safar, P. Tremblay, F. C. Szoka, F. E. Cohen, S. B. Prusiner, and M. R. Scott, J. Virol. 75:3453-3461, 2001), we investigated the inactivation of prions by sodium dodecyl sulfate (SDS) in weak acid. As judged by sensitivit...

متن کامل

Autophagy protects against de novo formation of the [PSI+] prion in yeast.

Prions are self-propagating, infectious proteins that underlie several neurodegenerative diseases. The molecular basis underlying their sporadic formation is poorly understood. We show that autophagy protects against de novo formation of [PSI(+)], which is the prion form of the yeast Sup35 translation termination factor. Autophagy is a cellular degradation system, and preventing autophagy by mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomaterials

دوره 31 8  شماره 

صفحات  -

تاریخ انتشار 2010